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Introduction

Surface electrochemistry is that part of physical electrochem- 
istry that deals with the fundamental properties of the elec-
trode/solution interface, including the role of surface structure 
and composition in reactivity and selectivity. The aims are simi-
lar to those in surface chemistry for solid/gas interfaces but  
involve a more complex scenario. Thus, the tools for probing 
surfaces in surface electrochemistry are very similar to the ones 
used in surface chemistry. However, due to the presence of 
the solvent (usually water), characterization techniques based 
on electron beams cannot be used. Also, water interference 
causes problems for in situ spectroscopic characterization 
techniques, since the water contribution has to be eliminated 
and a reasonable signal to noise ratio achieved. The usual ap-
proach to this problem is to accumulate spectra which are then 

subtracted from a reference spectrum. In situ scanning tun-
neling microscopy (STM) and synchrotron techniques can also 
be used, the latter being limited to a few laboratories. In addi-
tion, the stability of the interface limits most of the studies to 
short temperature ranges, between the boiling and freezing 
points of the solvent. 

In surface chemistry, a clean metal surface in ultra-high vac-
uum (UHV) environments can be defined as the surface in 
which only the metal atoms are present on the surface and any 
other atoms are below the detection limit. In contrast, in sur-
face electrochemistry, the definition must include water and 
some ions of the supporting electrolyte, as these are in intimate 
contact with the surface, but no other additional species. This 
condition is difficult to assess because of the complex nature of 
the surface response to the applied potential and the only way 
to achieve it is to define very strict surface conditions and to 
use ultrapure solution reagents. In this respect, experiments 
with single-crystal electrodes have the advantage of a known 
nominal atomic density such that agreement between charge 
density and atomic density can be achieved with extraordinary 
precision. In turn, because of the very strict control of surface 
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Resum. Els pilars fonamentals de l’electroquímica de la super-
fície dels elèctrodes de platí són revisats. Aquests pilars es re-
lacionen primerament amb la topografia de la superfície perquè 
les correctes respostes electroquímiques de les àmplies ter-
rasses i l’efecte dels esglaons de simetria diferent i dels setis 
ondulats són importants per a la caracterització in	situ. L’ad-
sorció d’anions té també un paper clau en les característiques 
selectives associades a la topografia de la superfície. Addicio-
nalment, l’adsorció competitiva d’anions i d’altres espècies en 
solució té unes conseqüències importants en la reactivitat. De 
la mateixa manera, l’adsorció d’adàtoms és un procés sensible 
a l’estructura que afecta la composició de la superfície de 
l’elèctrode. Es poden considerar dos casos segons si l’adàtom 
pot formar una capa estable o més en la regió de potencial 
usualment enregistrada. En el cas de més d’una capa, els re-
sultats es poden comparar amb els elèctrodes monocristal·lins 
corresponents, i s’obre així la possibilitat de relacionar el com-
portament característic d’ambdós sistemes.

Paraules clau: monocristalls de platí ∙ adsorció d’anions ∙ 
desplaçament de càrregues ∙ adsorció d’adàtoms ∙ 
multicapes ∙ potencial de càrrega total zero

Summary. Here we review the building blocks of platinum 
electrodes in surface electrochemistry. These blocks are pri-
marily related to the surface topography because the correct 
electrochemical responses of wide terraces and the effect of 
steps of different symmetry and kink sites are important for in 
situ characterization. Anion adsorption also plays a key role in 
the fingerprint features associated with surface topography. 
Additionally, competitive adsorption of anions and other spe-
cies in solution have important consequences for reactivity. 
Likewise, adatom adsorption is a structure-sensitive process 
that affects the surface composition of the electrode. Two cas-
es can be considered, depending on whether the adatom 
forms more than a single stable layer in the potential region 
usually scanned. In the latter case, when multilayers are gener-
ated, the results can be compared with those obtained from 
the corresponding single-crystal electrodes, with the possibility 
to compare the characteristic behaviors of the two systems.
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properties, the results of experiments such as those related to 
reactivity are valid not only with respect to reaction kinetics but 
also regarding fundamental double-layer thermodynamic pa-
rameters. Most of these reactivity-related and interfacial prop-
erties are structure sensitive; that is, they depend on the ar-
rangement of the atoms on the surface. 

Amongst pure metals, platinum is the most widely studied 
material in surface electrochemistry and this review will mainly 
deal with its properties. Accordingly, some of the building blocks 
of surface electrochemistry are discussed below, while the de-
scriptions are limited as much as possible to criteria derived from 
purely electrochemical techniques. These experiments have 
provided information reflecting the in situ properties of the inter-
face and they can be performed in most laboratories worldwide. 
Moreover, the results from other, complementary techniques 
should be compatible with those obtained in electrochemical ex-
periments if the problem is well defined. In the following sections, 
the discussion of these experiments is restricted to platinum, al-
though less active metals, such as gold, silver, and copper, have 
been studied at a fundamental level and the properties of some 
electrocatalytic metals, such as ruthenium, rhodium, and palla-
dium, have recently received significant attention. 

The surface of the metal substrate

The origin of surface electrochemistry studies on platinum was 
the quest for the origin of the multiple peaks for hydrogen ad-
sorption that appeared in the voltammetry of polycrystalline 
samples in contact with a clean test electrolyte, such as 0.5 M 
sulfuric acid. The characteristic voltammogram of these inter-
faces was well established in the 1970s, and a general consen-
sus was reached in laboratories throughout the world to accept 
this fingerprint profile as representative of a clean polycrystalline 
platinum electrode surface. The voltammetric profile comprises, 
among other features, two reversible pairs of redox peaks attrib-
uted to the underpotential deposition/stripping of a monolayer of 
hydrogen prior to hydrogen evolution (Fig. 1). The weakly ad-
sorbed couple appeared at 0.12 V, and the strongly adsorbed 
one at 0.28 V vs. the reversible hydrogen reference electrode 
(RHE). A third peak, at 0.22 V, was also observed in the positive-
going sweep, associated with the use of clean solutions [36]. Will 
was the first to examine whether these two peaks were related 
to surface-structure heterogeneity, in experiments using single-
crystal surfaces for the first time [118]. After contact with the so-
lution, the electrode/electrolyte interface was cycled between 
hydrogen and oxygen evolution until a stable voltammogram 
was reached, i.e., the same procedure used for polycrystalline 
electrodes. It was observed that the different orientations led to 
different hydrogen adsorption peaks, which could be then relat-
ed to the different sites present on polycrystalline platinum. 
However, the measured charge density was too high compared 
to the expected value, easily calculated from the surface atomic 
density. As stated before, this expected value can be readily 
computed for single-crystal surfaces—unlike polycrystalline 
samples—from the ideal packing density of each orientation, as-
suming monoelectronic transfer for each platinum surface atom. 

It was consequently proposed that electrochemical cycling in-
duced surface roughness. Then, the goal was to measure the 
charge density on electrode surfaces not cleaned by this stand-
ard procedure, which led to reproducible voltammograms of 
polycrystalline platinum samples.

Avoiding cleaning of the electrode by cycling it through the 
oxygen adsorption region turned out to be a serious problem 
[62,112], as evidenced by the fact that the results reported by 
the different laboratories were not reproducible. Also, charge 
densities, in most cases and especially for Pt(111), were com-
patible with only a small fraction of the hydrogen monolayer. 
Hubbard’s group achieved reasonable charge results but al-
ways routinely using one or two oxidation and reduction cycles 
prior to recording of the characteristic voltammogram [63,64]. 
It was clear, however, that the voltammetric profile of the hy-
drogen adsorption region was different for the different elec-
trodes used [63,64,92,110,118].

The situation changed dramatically in 1980, with Clavilier’s 
publication of flame-annealing pre-treatment [29–31]. The 
charge density under the voltammogram fit well with the sur-
face atomic density and the peaks observed in polycrystalline 
samples were identified. In fact, the weakly adsorbed hydrogen 
was shown to be representative of the Pt(110) orientation that 
also accounts for the third peak, and the strongly bound state 
was observed with the Pt(100) electrode. In addition, new, un-
predicted features appeared in the voltammograms; these 
were definitely considered as fingerprints of a particular surface 

Fig. 1. Voltammetric profiles of the Pt(111), Pt(100), Pt(110) and 
Pt(poly) electrodes in 0.5 M H2SO4 at 50 mV s-1.

125-252 Contributions 6-2.indd   162 17/05/11   15:15



Surface electrochemistry and reactivity Contrib. Sci. 6 (2), 2010  163

orientation (Fig. 1). Thus, flame cleaning explained the origin of 
the surface heterogeneity of the observed voltammetric fea-
tures and revealed other features that were never observed 
previously in polycrystalline samples. Consequently, a new se-
ries of problems appeared, namely, the correspondence be-
tween voltammetry and topography. The voltammetric profile 
previously resulting from flame annealing was considered as 
non-representative of the well-ordered surface, and again elec-
trochemical cycling was proposed to obtain the profile corre-
sponding to well-ordered surfaces [98–100]. The voltammo-
gram after flame annealing was considered to represent a sort 
of frozen surface state that would evolve to the stable one after 
cycling. This interpretation was rapidly abandoned in light of 
data from stepped surfaces [81] and, particularly, when proper 
UHV-electrochemistry transfer experiments [1,123] were per-
formed using well-defined surface techniques. To make a long 
history short, it was finally recognized that the electrochemical 
adsorption/desorption of oxygen led to disordered surfaces in 
most cases and that this happened especially with the two-di-
mensionally ordered basal plane electrodes. Definitive confir-
mation came when in situ STM images showed a flat surface 
after flame annealing and a disordered surface after a single 
excursion up to high potentials [18,40,65].

The most important consequence of this study was to real-
ize the power of voltammetry as a surface-sensitive technique. 
It was evident that a simple examination of the voltammetric 
profile of a freshly prepared electrode allowed identification of 
the nature of the platinum surface used and assessment of its 
quality, in a way similar to that achieved by analyzing low-ener-
gy electron diffraction (LEED) patterns. Additionally, it was also 
possible to detect the presence of surface defects associated 
with characteristic adsorption states whose charge density 
would be a direct measure of their relative population on the 
whole surface. Moreover, as is the case with polycrystalline 
platinum, the voltammogram profile can be used to detect the 
presence of surface contamination, since sharp features would 
be less marked and less reversible because of the adsorption 
of impurities and subsequent blockage of these states for hy-
drogen adsorption. Surface contamination could be the result 
of incorrect preparation of the electrode surface in the flame-
annealing/cooling step or of solution impurities. In the first 
case, the voltammetric profile may not show sharp features, 
but is stable upon cycling. If contaminants are present in the 
solution, the first voltammogram usually resembles the correct 
one but the adsorption charge decreases upon cycling as the 
impurities reach the surface and block the active sites. 

Extensive topographic studies have been carried out with the 
most packed surface Pt(111) and its vicinal stepped surfaces 
[57,65,67,109]. Results suggest that cooling down in a reduc-
tive atmosphere (H2+Ar) is usually necessary to obtain better-
ordered surfaces, as thermal oxygen adsorption leads to disor-
dered topographies. Accordingly, bulk electrodes may have the 
correct orientation on X-ray diffraction, but their surfaces may 
be completely disordered if the appropriate treatment is not 
used. This is especially important when stepped surfaces are 
studied. As a classical example, the voltammogram of Pt(S)
[n(111)×(100)] electrodes shows the correct voltammetric pro-

file, with a single step contribution at 0.28 V RHE, only if the 
cooling step is performed in the absence of air oxygen [87]. In 
the latter case, a second contribution, in fact the most promi-
nent one, at 0.12 V, corresponding to Pt(110) sites, also ap-
pears in the voltammogram. Under the appropriate cooling 
conditions, the voltammetry of stepped surfaces usually shows 
sharp peaks whose charge densities are related to the step 
density (it should be recalled that the density of terrace edge 
sites is the same as the step density). In a naive interpretation, 
sharp peaks usually suggest the presence of a single adsorp-
tion state on the surface and this is equivalent to the existence 
of widely ordered, nominally infinite, mono-dimensional surface-
adsorption states. In the classical polycrystalline electrodes vol-
tammogram, with the electrodes’ surfaces activated by electro-
chemical cycling, the two main adsorption states are broader 
than in the preceding case, suggesting that cycling not only 
breaks the two-dimensional surface order of the terraces but 
also that of the steps. This was confirmed after preparation of 
kinked surfaces. In this case, in the absence of an electrochem-
ical cycling step, not only were there two adsorption peaks for 
the step sites, as expected when two adsorption states having 
two different symmetry sites are present on the step, but also 
they were broader than on the corresponding single-stepped 
surfaces Pt(531) [17]. Kinked surfaces show chiral reactivity al-
though this property should be examined with chiral probes, 
i.e., other than hydrogen adsorption [2,8,9].

Comparatively speaking, fewer studies have been carried 
out with Pt(100) [50,67,113]. Different reductive cooling atmos-
phere treatments of Ar [67], Ar+H2 [24,80] or, more danger-
ously, CO [67], are described as suitable to obtain the best 
possible surface topographies and the corresponding voltam-
metric profiles. The situation is more dramatic in the case of 
Pt(110) [79]. The cooling temperature is a key point in the prep-
aration of reconstructed (2×1) or unreconstructed surfaces 
[20,77]. In this latter surface, well-defined STM images have 
not yet been published in spite of serious attempts to achieve 
this goal. The lack of data points out the difficulties, still unre-
solved, in characterizing this elusive open surface at the atomic 
level. Based on trends from stepped surfaces, it would appear 
that the current flame-annealing standard pre-treatment would 
result in 85% defect-free Pt(100) [37] electrodes but only 50% 
defect-free Pt(110) electrodes as compared to nearly 99–100% 
defect-free in the case of Pt(111) [107].

Recent efforts have led to an improvement in obtaining 
nearly ideal surface topographies at the atomic level. This 
means that surfaces having terrace widths of 2–10 nm can be 
prepared [117]. Although this method seems to be restricted to 
compact Pt(111) fcc surfaces, it will be crucial to study the re-
activity of extremely well-ordered domains, which are some-
times masked by the presence of surface defects [54,70,74]. 
The results of these studies will supply the criteria needed to 
improve the preparation methods of more open surfaces. It 
should be stressed that surface order is a key parameter in 
understanding reactivity and the use of model electrodes 
should provide data on the role of ordered domains versus sur-
face defects in electrocatalysis. This is particularly important 
when the reactivity of large molecules is under analysis.
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Charge displacement and anion adsorption

Following the interpretation of the adsorption states in poly-
crystalline Pt, the low-potential characteristic features ob-
served on platinum single crystals, i.e., those that can be used 
as fingerprints of their surface state, were originally assigned to 
hydrogen adsorption at the (sub)monolayer level. This assign-
ment was reinforced by the good correspondence between 
the experimental charge density and the theoretical atomic 
packing density of the corresponding surface [29,30,38]. In the 
case of Pt(111) and its vicinal surfaces, this agreement was ex-
tremely good and the small charge excesses measured on 
Pt(100) and Pt(110) could be attributed to the consequence of 
surface reconstruction, a phenomenon well-described in UHV 
for both orientations [38,86]. Following the first studies with 
flame-annealed electrodes, it was, however, suggested that 
the high adsorption state of Pt(111) in perchloric acid could not 
be compatible with the adsorption energies of hydrogen on 
these surfaces as measured in UHV [112]. A possible explana-
tion was that the strong fields present on the electrode/electro-
lyte interface were claimed to be responsible for this extraordi-
nary adsorption energy [38,69]. Alternatively, several authors 
considered that anions, including OH, accounted for a signifi-
cant fraction of the charge transfer measured in the high-po-
tential region [66,111]. This double interpretation remained for 
more than ten years in the literature. For characterization pur-
poses, it was clear that the total charge density values agreed 
reasonably well with the surface packing density and were es-
sentially correct from a quantitative point of view, but interpre-
tation of the origin of the charge transfer, e.g., the species in-
volved in the redox process, remained under discussion. As so 
frequently happens, the existing set of experimental data could 
not univocally support a unique interpretation, one that exclud-
ed other options.

The required new experiment came when other surface 
probes, such as CO, were studied on Pt single crystals. CO is an 
important molecule in surface electrochemistry, not only be-
cause it is the main surface poison in fuel-cell research but also 
because it undergoes a characteristic structure-sensitive, anion-
dependent oxidative stripping reaction in the adsorbed state:

 CO + H2O " CO2 + 2H+ + 2e

In this reaction, CO is stripped from the surface, which then 
becomes clean because none of the products can be ad-
sorbed at these potential or concentration conditions. Simple 
measurement of the stripping charge was used for characteri-
zation purposes, since, in principle, it should be twice that 
measured in the lower potential region, as extensively reported 
and accepted in polycrystalline Pt samples.

Previously, CO experiments were mainly interested in oxi-
dative stripping of the adsorbed CO layer, which fully covered 
the single-crystal electrode. The use of single-crystal elec-
trodes, especially Pt(111), enabled the use of other comple-
mentary techniques, such as Fourier transform infra-red 
(FTIR) spectroscopy, radiotracer experiments with radioactive 
isotopes, and STM in situ images. It was observed that while 

the stripping charge of the complete monolayer was close to 
CO coverage values of almost unity [20,43], the techniques 
that were sensitive to the molecular nature of the reactant and 
products supported a considerably lower coverage [15,116]. 
This contradiction between measured charges and molecular 
information was not satisfactorily resolved and required arbi-
trary corrections. The explanation came from the so-called 
CO displacement experiment, which was first carried out on 
the Pt(111) electrode, e.g., that in which different coverage 
was determined, and on the Pt(110) electrode [20]. In the 
genesis of that experiment, CO was expected to adsorb 
strongly on Pt(111) because it was able to displace iodine 
from the surface [123]. Accordingly, it was expected that any 
species coming from the aqueous solution of the test electro-
lytes, such as perchlorate and sulfate anions, would be also 
displaced. In contrast to voltammetry, in which hydrogen ad-
sorption and anion desorption are reductive processes, the 
displacement experiment was able to prove a difference in 
the sign of the displaced current: if the potential at which the 
experiment is carried out corresponds to a surface covered 
by adsorbed hydrogen, then:

 Pt-H + CO " Pt-CO + H+ + e

and an oxidation charge is recorded. However, if anions are ad-
sorbed at the potential at which the experiment is made, then:

  Pt-A + CO + e " Pt-CO + A-

and a reduction current is observed. The displacement charg-
es correspond to the reverse of the initial charge on the elec-
trode surface at the potential at which the experiment is car-
ried out:

 qdisp = qf – qi  b – qi

because the final charge density of an electrode covered by 
adsorbed CO is negligible compared to the charge of the elec-
trode in the absence of CO, in most cases. 

The experiment agreed with the existence of (at least) two 
different adsorbates being responsible for the charge transfer 
resulting in the characteristic voltammetric features [20,41, 
53,85]. As a first consequence, the CO stripping experiment, in 
which the electrode surface becomes clean, needed a signifi-
cant double-layer charge restoration because anions should 
be finally fully adsorbed at the upper potential limit of the sweep 
[20]. Once corrected, the results of the different techniques 
nicely agreed with the coulometric data and CO coverage was 
accepted to be about 0.7 on Pt(111). 

A second consequence was the establishment of a corre-
spondence between the displaced charge and the electrode 
coverage. To achieve this, some essential conditions must be 
fulfilled: the charge displacement experiment is quantitative if, 
and only if, the displacing agent behaves as a neutral probe in its 
adsorption step. This means that the CO adsorption step should 
not involve charge transfer. To confirm this condition, a monol-
ayer of iodine on Pt(111) whose coverage is precisely known [94] 
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within the experimental error limits of the displacement experi-
ment was displaced according to the following reaction:

 Pt-I + CO + e " Pt-CO + I–

The reduction charge displaced at different potentials cor-
responded to a reductive process and was the same at differ-
ent potentials, involving a number of iodine atoms that agreed 
with the coverage expected from STM experiments [19]. Thus, 
CO could be considered as a neutral probe and the source of 
the displaced charges coming only from the other adsorbates. 
For purposes of consistently, I2 was also used as the displacing 
agent, with the results confirming those obtained by CO dis-
placement [58]. Iodine has the advantage that the displace-
ment process is able to directly check the behavior of the OH 
adsorption step observed on Pt(111) in perchloric acid.

The displaced charges are usually dependent on the poten-
tial at which the experiment is carried out. At low potentials, the 
oxidative process is related to the displacement of hydrogen 
adsorbed on the surface, while the reductive processes ob-
served at high potentials are related to the displacement of ad-
sorbed anions. Thus, there is an intermediate potential at which 
the displaced charge is zero. This particular potential was as-
signed, as a first approximation, to the potential of zero total 
charge (pztc) of the electrode (–qi = 0). The value of this final 
charge may be estimated based on several assumptions about 
Pt(111), with a refined value of the displaced charge then ob-
tained together with a better estimation of the pztc [52,115].

Knowledge of the pztc of the different electrodes is important 
from a fundamental viewpoint because molecular [7,34] and an-
ion adsorption coverage can be estimated if the formal charge 
number, the electrosorption valency, is defined [50,82,84]. The 
effect of step dipoles [52] can be checked as well as the ad-
sorbed adatoms or adlayers. The study also can be extended to 
other metals [6,120]. The charge displacement method can be 
used with polycrystalline and dispersed materials [16] and local 
effects evaluated by comparison with other surface probes such 
as N2O [10,34]. Moreover, macroscopic determinations of the 
pztc values can be compared to pulsed-laser microscopic de-
terminations of the potentials of maximum entropy of the double 
layer [32,33,45–49]. Relevant data to quantitatively explore and 
model the metal/electrode interface of hydrogen adsorbing elec-
trodes can then be obtained.

Foreign adatom layers

Once the main problems, i.e., those related to the control of 
surface order and determination of the relevant surface species 
transferring the charge, are solved, the surface composition is 
checked. Strictly speaking, surface composition effects should 
be studied on well-defined alloy electrodes. However, the diffi-
culty in this experimental framework is enormous. As is well 
known, the surface may be different from the bulk composition, 
which is the parameter that can be easily controlled. This effect 
will be more evident if one considers that flame annealing or any 
other high-temperature cleaning method is required. To prop-

erly characterize alloy surfaces, UHV techniques should be 
used and the electrode safely transferred to the cell prior to any 
electrochemical experiment; that is, it is not possible to perform 
the flame-cleaning step routinely because the surface composi-
tion may change after each treatment and the surface would 
continuously become enriched in one of the components.

To solve this problem in a first approach, the deposition of 
(sub)monolayers of foreign atoms on a well-defined single-crys-
tal substrate electrode has been fruitful. The optimal situation is 
that in which adatom coverage remains stable on the substrate 
surface over a wide range of potentials, even if the adatom ions 
are not in solution. This is achieved in those cases in which there 
is irreversible adsorption of the adatom [28,44]. The irreversibility 
of the adsorption step guarantees that the surface composition 
remains stable in the absence of other ions in solution that could 
adsorb and therefore modify the composition. A second, quite 
important property is that in which the adsorbed adatom under-
goes a surface process whose charge density is proportional to 
its surface concentration (Fig. 2). This occurs when the adatoms 
are subjected to a surface redox process in a well-defined range 
of potentials, one that is likely different from that in which the 
substrate adsorption states appear. A comparison between the 
two signals is an internal test to check the presence of uncon-
trolled contaminants in the adatom dosing step. In these cases, 
it is possible to continuously vary the surface composition of a 
single-crystal electrode and to compare the change in reactivity 
of a particular reaction by varying the surface composition. Once 
the reactivity step is performed, the electrode surface may be 
studied again in a clean cell to check whether the composition of 
the electrode is the same as at the beginning of the experiment.

Among the best characterized, irreversibly adsorbed systems, 
As on Pt(111) can be considered as a simple system in which 
charge density is conserved over the entire range of potentials 
between 0.7 V and the beginning of hydrogen evolution [13,22,83]:

 q(111) = qPt  + q As

Fig. 2. Comparison of the voltammetric profiles of a Bi covered Pt(111) 
(full line) and an unmodified Pt(111) electrode in 0.5 M H2SO4 at 50 mV s–1.
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where the value of q(111) is 241 nC.cm–2, qPt is the charge under 
the remaining adsorption states of Pt, and qAs is the charge of 
the surface redox process of adsorbed As. Diminution of the 
substrate charge reflects adsorption of the adatom as it pro-
gressively covers the surface. The adatom redox process re-
mains constant in the RHE scale while the solution pH is varied, 
thus supporting the formation of surface oxygenated species. 
Finally qAs amounts to 241 nC.cm–2 at full substrate blockage. It 
was shown that this value is independent of the anions present 
in solution, and any contribution of anion adsorption to the re-
dox surface reaction of adsorbed As was discarded by FTIR 
spectroscopy [59,83]. The linear relation described above, to-
gether with As chemistry and the fact that As atoms are bigger 
than Pt atoms, suggests a surface stoichiometry in which each 
As adatom blocks three surface sites. In the redox process, As 
exchanges three electrons to maintain the charge balance. This 
model implies a (√3×√3) R30º structure of adsorbed As on the 
surface, as shown by STM [83]. It was also shown that the re-
dox process involved the formation of As III oxygenated species 
[122], as inferred by simple electrochemical measurements. 
Since no other solution species, except water, participates in 
the redox process, temperature effects could be analyzed (ther-
modynamically), with the data supporting the formation of 
As(OH)3, at potentials higher than that of the redox process, 
prior to further oxidation to soluble As (V) species [22].

In contrast to As, the case of Bi on Pt (111) yielded more 
elusive results. In this case, the charge densities led to a cali-
bration curve whose slope suggested that the number of elec-
trons per Bi adatom is 2, a number not usual in bismuth chem-
istry [25,42]. Electrochemical results suggested that the surface 
structure of the adlayer was the same as in the case of As at full 
Bi coverage, with the pH shift pointing to the formation of hy-
droxylated species. The possible contribution from other spe-
cies such as anions may in this case be problematic [35].  
Nonetheless, Bi-Pt has been shown to be an extremely good 
electrocatalytic system to oxidize formic acid [24,26,27,60, 
61,71,95–97,101–103]. This has led to a series of studies that 
finally achieved the preparation of intermetallic Pt-Bi com-
pounds serving as practical electrocatalysts [14,93]. Moreover, 
the intermetallic compound Pt-Pb was also prepared [78] and 
was shown to be more active than Pt-Bi in formic acid oxida-
tion, as suggested in earlier studies on polycrystalline platinum 
substrates [114,119]. The problem is that irreversibly adsorbed 
Pb on Pt(111) is not stable, with the main redox process al-
ways leading to adatom dissolution in acid medium [23,42]. 
Therefore, in fundamental studies performed with single-crystal 
electrodes the system has been less explored than the one in-
volving irreversibly adsorbed Bi.

One interesting aspect of irreversibly adsorbed adatoms is 
the preferential adsorption on step sites over terrace sites. This 
allows modification of step composition while keeping the ter-
race sites free of adatoms. This has led to reactivity studies on 
defects generally considered to be the most reactive surface 
sites. It was shown that step decoration requires the use of 
electropositive adatoms, as electronegative ones also adsorb 
to the terrace [56]. These decorated surfaces have been useful 
to demonstrate that Pt(111) terraces are almost inactive to-

wards several technologically important reactions, such as the 
self-poisoning of HCOOH, which only takes place on step 
sites, preferably those with (110) symmetry, and not on (111) 
terraces, which, in turn, are very sensitive to the direct oxida-
tion of formic acid when modified by irreversibly adsorbed Bi 
[74–76]. This inhibition of poisoning may also explain the origin 
of the extremely high enhancement of reactivity towards 
HCOOH oxidation observed in this particular (Pt(111)-Bi) case 
(a 40-fold increase in the current measured at 0.5 V).

One of the advantages of irreversibly adsorbed Bi over As is 
that the surface redox process on Pt(111) takes place within a 
potential range that is selectively different from the one on other 
planes [28]. If stepped surfaces are used, the charge density 
involved in the Bi redox process can be confirmed as being lin-
ear with the terrace atomic density at full substrate blockage 
[89,90]. This charge is not influenced by contributions from any 
other orientation in which Bi also adsorbs. It can be concluded, 
also using stepped surfaces, that the charge density involved 
in the Bi redox process is linear with the terrace atomic density 
at full substrate blockage. This charge is not influenced by con-
tributions from other orientations in which Bi is also adsorbed, 
which has the advantage that Bi can be used as a probe to 
determine the fraction of terrace sites with (111) symmetry on 
polycrystalline platinum samples [90,104]. Similar properties 
have the redox process coming from irreversibly adsorbed Ge 
[91,104]. In this case, the relevant orientation is that of Pt(100) 
terrace domains, which are proportional to the charge density 
under the adatom-related signal at full coverage. Incidentally, 
Te adatoms could be used as probes for simultaneous calibra-
tion of (111) and (100) sites, because the characteristic redox 
reactions are observed in different potential ranges, provided 
that the substrate-characteristic hydrogen-anion adsorption re-
gion suggests that signal overlap for intermediate surface struc-
tures is unlikely [89]. In any case, Te can be used as a second 
probe to verify the predictions from both Bi and Ge on a particu-
lar type of site as well as to check the overall result. Irreversibly 
adsorbed Te has been satisfactorily characterized by STM and 
the adlayer structures found to be compatible with the electro-
chemical determinations [88,121].

These three surface probes (Bi, Te, and Ge) have been used 
to determine the fraction of (111)- and (100)-ordered domains 
present in different samples of nanoparticles [89,104]. Also, 
deconvolution of the voltammetric profile in the low-potential 
region has been applied for the same purposes. The results 
obtained with the two procedures are in good agreement, 
which supports the consistency of both experimental charge-
density measurements to obtain relevant surface-structure in-
formation. The relative fraction of the different sites is very im-
portant when the electrocatalytic results of the different 
nanoparticle samples have to be rationalized with respect to 
surface structure [55,105,106,108] and it is always convenient 
to determine the site distribution by in situ methods.

An important group of adatoms are noble metals, which 
also deposit on the platinum surface as a (sub)monolayer. In 
this case a driving force is usually necessary to fully achieve the 
surface process, i.e., either chemical (such as hydrogen) or 
electrochemical deposition. As a function of the adatom 
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amount, several characteristic features appear in the voltam-
mogram, which can then be used to precisely define the sur-
face composition and to evaluate the surface coverage, analo-
gous to non-noble adatoms, but usually in the low-potential 
range, e.g., particularly linked to hydrogen adsorption. 

A paradigmatic example is palladium deposited on Pt(111), 
a system in which epitaxial growth was anticipated because of 
the almost identical lattice parameters of the two metals [3–
5,12,21] (Fig. 3). From the electrochemical viewpoint, during  
the first stages of Pd deposition a new adsorption state ap - 
pears at 0.205 V, while the characteristic voltammetric features 
of the substrate diminish. As deposition proceeds, the palladi-
um state becomes larger and extraordinarily sharp but, unlike 
the irreversibly adsorbed non-noble metal, the sharp spike at 
0.45 V characteristic of wide Pt(111) terraces is still observed. 
This fact suggests that Pd deposition takes place in islands, 
likely stabilized by anion adsorption on the substrate and on the 
foreign adatom layer. Island growth was corroborated by FTIR 
spectroscopy of adsorbed CO, showing absorption bands at 
1910 cm–1 (Pd) and 2060 cm–1 (Pt), irrespective of the palladium 
coverage and therefore suggesting a uniform neighborhood at 
the atomic level [39,51]. Characterization may be achieved by 
plotting the charge density under the palladium-related signal 
against the remaining substrate charge density, but in this case 
it is also possible to perform CO charge-displacement experi-
ments that evaluate the role of the anions and of the pztc (or the 
potential of zero free charge, pzfc, after the same assumptions 
necessary for the platinum substrate) [4,6].

Interestingly, once the first adatom-related peak develops, a 
second adsorption state starts to appear at potentials lower 
than the first one [3,73]. This suggests the growth of a second 
layer—actually of several layers, as determined by UHV tech-
niques—that start to deposit on the surface [11]. In this respect, 
the noble metal atoms deposited on platinum (or other noble-
metal single-crystal surfaces, such as gold) constitute a unique 
group in which it is possible to compare differences, at funda-
mental or applied levels, between the first layer on top of the 
substrate and further layers, eventually reaching the behavior of 
the bulk material which, in turn, can be compared with the same 
characteristic parameters of the corresponding single-crystal 
electrode. This comparison cannot be made with the previously 
discussed non-noble adatom adlayers, in which the stability of 
the deeper layers, or even that of a compressed first adlayer, is 
much lower in the potential range used to characterize the sur-
face. Conversely, the stable layers, usually involving a coverage 
value between 0.33 and 0.50, can be safely studied.

In the case of Pd on Pt(111), the pzfc, measured by extrapo-
lating the free charge in the apparent double-layer region, leads 
to a value lower than that of Pt(111) and the difference between 
the two pzfc values coincides with the work-function differenc-
es of the two metals [4]. This serves as an additional test, albeit 
an indirect one, of the free charge estimation procedure. Con-
trarily, the pzfc of the first Pd monolayer lies between the two 
extreme values, which can explain the electrocatalytic proper-
ties of the single adlayer [72]. In this type of system, more ex-
periments are required to confirm the observed trends. Palladi-

Fig. 3. Evolution of the voltammetric profile of the Pt(111) electrode upon deposition of a Pd layer in 0.5 M H2SO4 at 50 mV s–1.
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um adlayers are also important to check substrate effects, as 
they can be deposited on single-crystal gold electrodes and 
other metal surfaces [6,68]. This would offer a unique system in 
which full monolayer adsorption may be performed under con-
trolled conditions and the properties compared for a particular 
structure-sensitive reaction. It is evident that additional studies 
are needed in this area in order to discover all the possible inter-
facial and reactivity effects associated with these single layers.
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